Publication Highlight /rasei/ en Light-powered reactions could make the chemical manufacturing industry more energy-efficient /rasei/2025/06/26/light-powered-reactions-could-make-chemical-manufacturing-industry-more-energy-efficient <span>Light-powered reactions could make the chemical manufacturing industry more energy-efficient</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-06-26T16:25:34-06:00" title="Thursday, June 26, 2025 - 16:25">Thu, 06/26/2025 - 16:25</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-06/2025_06_TheConversationPhotoCat_Thumbnail.png?h=2469e47b&amp;itok=MCRA4_1D" width="1200" height="800" alt="Sunshine"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/259"> Media Engagement </a> <a href="/rasei/taxonomy/term/177"> News </a> <a href="/rasei/taxonomy/term/170"> Publication Highlight </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/281" hreflang="en">Catalysis</a> <a href="/rasei/taxonomy/term/163" hreflang="en">Damrauer</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/350" hreflang="en">SUPRCAT</a> </div> <a href="/rasei/our-community">Daniel Morton</a> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><div class="feature-layout-callout feature-layout-callout-large"><div class="ucb-callout-content"><div class="ucb-box ucb-box-title-left ucb-box-alignment-none ucb-box-style-fill ucb-box-theme-lightgray"><div class="ucb-box-inner"><div class="ucb-box-title">Show me more!</div><div class="ucb-box-content"><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-large ucb-link-button-full" href="https://theconversation.com/light-powered-reactions-could-make-the-chemical-manufacturing-industry-more-energy-efficient-257796" rel="nofollow"><span class="ucb-link-button-contents">The Conversation Highlight</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-large ucb-link-button-full" href="/rasei/suprcat" rel="nofollow"><span class="ucb-link-button-contents">SuPRCat</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-large ucb-link-button-full" href="https://doi.org/10.1126/science.adw1648" rel="nofollow"><span class="ucb-link-button-contents">Research Article</span></a></p></div></div></div></div></div><p>A recent collaborative report, published in Science, including RASEI Fellow Niels Damrauer, addresses a key issue for light-driven chemistry, potentially opening up possibilities for future energy-efficient chemical manufacturing.</p><p>Chemical reactions typically require an input of energy to proceed, this can be through heating, or introduction of chemical energy in the form of reactive chemicals. Recently, light-driven chemistry has emerged as a more energy efficient alternative. The principle is to use energy from light, which is absorbed by a catalyst. Excited by the light energy the catalyst can then donate an electron to the chemicals undergoing the desired chemical transformation.</p><p>This sounds great – light-driven reactions? One of the key issues in this class of chemistry is back transfer of the electron. This means that after the catalyst donates the electron to the reagents, instead of doing the desired reaction, the reagent gives the electron back to the catalyst. This can significantly slow down the desired reaction, even sometimes shutting it down.</p><p>This report details a new type of catalyst that can overcome this back transfer of electrons. Through rationale design of the catalyst the new system uses a chemical reaction as a catch, preventing the back transfer from the reagent and strongly favoring the desired reaction.</p><p>To highlight the impact of this work, which was completed as part of the NSF Center for Chemical Innovation Center for Sustainable Photoredox Catalysis (SuPRCat), ɫƵ student Arindam Sau, a member of the Damrauer group, teamed up with a graduate student and postdoc from Colorado State University to put together a review and summary of this work that was recently published in The Conversation. Check out the highlight to get a full picture of the impact of this work.&nbsp;<span>&nbsp;</span></p></div> </div> </div> </div> </div> <div>June 2025</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2025-06/2025_06_TheConversationPhotoCat_Hero.png?itok=q7xSJC5u" width="1500" height="323" alt="Sunshine"> </div> </div> <div>On</div> <div>White</div> Thu, 26 Jun 2025 22:25:34 +0000 Daniel Morton 1331 at /rasei Electricity, Air, and Plastic Recycling /rasei/2025/06/17/electricity-air-and-plastic-recycling <span>Electricity, Air, and Plastic Recycling</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-06-17T15:15:48-06:00" title="Tuesday, June 17, 2025 - 15:15">Tue, 06/17/2025 - 15:15</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-06/2025_06_02_LucaPlastics.jpg?h=8f74817f&amp;itok=MAikwS2w" width="1200" height="800" alt="Illustration of superoxide breaking apart a polymer chain"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> <a href="/rasei/taxonomy/term/170"> Publication Highlight </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/51" hreflang="en">Barlow</a> <a href="/rasei/taxonomy/term/281" hreflang="en">Catalysis</a> <a href="/rasei/taxonomy/term/284" hreflang="en">Circular Economy</a> <a href="/rasei/taxonomy/term/149" hreflang="en">Luca</a> <a href="/rasei/taxonomy/term/50" hreflang="en">Marder</a> <a href="/rasei/taxonomy/term/113" hreflang="en">Miller</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/289" hreflang="en">Polymers</a> </div> <a href="/rasei/our-community">Daniel Morton</a> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p class="lead"><em>This collaboration between four RASEI Fellows shows how electricity can be used to impart ‘superoxide powers’ to oxygen gas molecules from air, enabling the efficient recycling of PET plastics.&nbsp;</em></p><p>In 2012, 32.5 million tons of plastic waste was produced globally. 4.5 million tons of which was poly(ethylene terephthalate), better known as PET. You likely know this as the plastic that has the number 1 in the middle of the recycling symbol. PET is used extensively in materials such as packaging, textiles, films, and flexible electronics. By far and away its main use is in bottled drinks. PET is considered a standout material, it is strong, chemically resistant, transparent, and impermeable to water. Even better, it is possible to recycle PET – it has its own number, right? Unfortunately, this is not quite the full story. Globally, it is estimated that only about 9% of plastic waste is recycled, and while PET waste is one of the best performers, with a recycling rate approaching between 25-30%, the majority of plastic, even PET, ultimately ends up in landfills, incinerated, or worse, polluting our environment. The magnitude of this problem is only increasing; in 2024 the world generated an estimated 240 million tons of plastic waste, representing more than eight-fold increase in 12 years and highlighting the need for more effective solutions.&nbsp;</p><p>This teams bring together four RASEI Fellows, <a href="/rasei/oana-luca" rel="nofollow">Oana Luca</a> (Chemistry, ɫƵ), <a href="/rasei/seth-marder" rel="nofollow">Seth Marder</a> (Chemistry and Chemical &amp; Biological Engineering, ɫƵ), <a href="/rasei/stephen-barlow" rel="nofollow">Stephen Barlow</a> (RASEI, ɫƵ) and <a href="/rasei/elisa-miller-link" rel="nofollow">Elisa Miller </a>(Chemistry and Nanoscience, NREL) to address the accelerating issue of plastic waste. While there are many parts to this global challenge, this research focuses on how we recycle plastics, specifically PET. When we think about recycling plastic, most of us just think about throwing a plastic bottle, or piece of packaging, into a recycling bin. We rarely give it much thought after that. This really is just the start of a journey that is more complex than many realize. There are actually several different approaches to giving plastic a second life. The most common, and perhaps the method that most people are familiar with, is mechanical recycling.&nbsp;</p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default 3"> <div class="ucb-article-row-subrow row"> <div class="ucb-article-text col-lg d-flex align-items-center" itemprop="articleBody"> <div><p>Think of mechanical recycling like an industrial washing machine combined with a paper shredder. Plastic items are collected, sorted, cleaned, and then chopped up into small flakes or melted down into pellets that can be molded into new products. This approach is efficient and works great for clean, single-type plastics, but there are some significant limitations with this process. In the same way that a white shirt can’t be perfectly restored after being mixed with brightly colored laundry, plastic quality degrades each time it goes through mechanical recycling. This reduction in quality is stark, most mechanically recycled plastics can only go through the process 2-3 times before they become unusable. This makes it financially unattractive and severely limits the long-term efficacy of recycling. How can this be an enduring solution if we can only recycle something a couple of times?</p><p><span>Chemical recycling takes a very different route, instead of the ‘brute-force’ approach of just melting and reshaping the plastic, it employs a more surgical method, breaking down the plastic polymer chains into their constituent molecular building blocks. These molecular building blocks can then be used, either to make new plastics, or for other applications. Because the new plastics are made with molecular control, there is no degradation in quality, and the materials can be recycled over and over, essentially as many times as you wish. Instead of a washing machine combined with a paper shredder, this is more like a LEGO set, where the model can be taken apart brick by brick and be used to build something entirely new. This research describes a new approach to depolymerization, a class of chemical recycling.</span></p></div> </div> <div class="ucb-article-content-media ucb-article-content-media-right col-lg"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2025-06/RecycleOverall.png?itok=m-m4YpQI" width="1500" height="1238" alt="Schematic comparing current recycling economy to one based on chemical recycling. "> </div> </div> </div> </div> </div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p>The research described in this RASEI collaboration, <a href="https://doi.org/10.1021/acssuschemeng.4c08711" rel="nofollow">just published in ACS Sustainable Chemistry and Engineering</a>, offers a new, more efficient approach. By passing an electric charge through the reaction, electrons can be used to activate molecules that can then go on to react with the polymer. <a href="/today/2023/07/05/future-recycling-could-one-day-mean-dissolving-plastic-electricity" rel="nofollow">In a recent study</a>, that used additive molecules as electron shuttles, the team observed the addition of electrons to oxygen gas molecules in small amounts present in the reaction, that were originally thought to be innocent bystanders in the mixture. This led the team to hypothesize that oxygen gas molecules, directly from air, could be chemically reduced, (that is that they take on an extra electron), leading to the formation of a relatively stable superoxide radical anion, O<sub>2</sub><sup>·–</sup>. This activated superoxide now acts in place of the solvent and reacts directly with the polymer. Since the superoxide has an extra electron gained from the electric current, the negatively charged superoxide molecule reacts with the centers that have a positive charge on the polymer. This results in the breaking down of the polymer in a predictable and selective fashion, and the incorporation of oxygen into the building blocks instead of the solvent molecules, leading to the reliable and reproducible formation of the same molecules that were used to build the polymer in the first place. The LEGO bricks are formed cleanly and are ready to be used again, with no degradation in molecular quality. This work demonstrates this technology on a range of different plastics using air, arguably one of the most abundant and cheap reagents, as the primary oxygen source, and all done at room temperature and pressure, a huge improvement on other chemical recycling approaches. While the results are promising and show good efficiencies, this lab-based proof of principle still has a number of challenges to solve before it can be scaled up to meaningful levels.</p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p>Today, most plastics are recycled using mechanical recycling, which is like the combination of an industrial washing machine and a paper shredder, producing low-quality products and reducing the possibility of future recycling, leading many to explore chemical recycling as an alternative to gain access to more valuable chemical building blocks. Current mainstream chemical recycling methods are like using a sledgehammer, they typically require high temperatures and lots of energy to break the chemical bonds. The development of electrochemical methods offers a more controlled approach, breaking down plastics at the molecular level and reliably producing build blocks that can be used over and over again. New recycling technologies could transform how we handle plastic waste, opening the door to recycling previously un-recyclable plastics, doing it in a more energy efficient way, producing higher quality recycled plastics, and making recycling economically competitive with virgin plastic production from oil. The development of more effective and general recycling strategies isn’t just an environmental imperative. As plastic waste continues to accumulate, it is rapidly becoming an economic necessity. We already have so much plastic in the world, if we can develop methods to regenerate and reuse the building blocks from plastic waste it will turn landfills into gold mines.</p><p><span>How amazing would it be if instead of society wasting plastics, filling landfills, and polluting our environments, we viewed used plastics as a commodity for future applications?</span></p></div> </div> </div> </div> </div> <div>June 2025</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2025-06/2025_06_02_LucaPlastics_wide.jpg?itok=cL2sn-a7" width="1500" height="328" alt="Illustration of superoxide breaking apart a polymer chain"> </div> </div> <div>On</div> <div>White</div> Tue, 17 Jun 2025 21:15:48 +0000 Daniel Morton 1330 at /rasei Understanding light-driven production of hydrogen could unlock future insights for harnessing light for chemistry /rasei/2025/06/09/understanding-light-driven-production-hydrogen-could-unlock-future-insights-harnessing <span>Understanding light-driven production of hydrogen could unlock future insights for harnessing light for chemistry</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-06-09T10:27:04-06:00" title="Monday, June 9, 2025 - 10:27">Mon, 06/09/2025 - 10:27</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-06/2025_05_Dukovic_Screen.jpg?h=8f74817f&amp;itok=nHL6908e" width="1200" height="800" alt="illustration of the hybrid catalyst reaction to produce hydrogen"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> <a href="/rasei/taxonomy/term/170"> Publication Highlight </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/281" hreflang="en">Catalysis</a> <a href="/rasei/taxonomy/term/160" hreflang="en">Dukovic</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/154" hreflang="en">King</a> </div> <a href="/rasei/our-community">Daniel Morton</a> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p class="hero">Light to fuel: clean hydrogen production. Improved understanding of the light-driven production of hydrogen holds the promise not just to make the reaction more efficient in producing a fuel, but also to offer a framework to better understand future light-driven chemistries.&nbsp;</p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default 3"> <div class="ucb-article-text" itemprop="articleBody"> <div> <div class="align-right image_style-small_500px_25_display_size_"> <div class="imageMediaStyle small_500px_25_display_size_"> <img loading="lazy" src="/rasei/sites/default/files/styles/small_500px_25_display_size_/public/2025-06/Researchers.png?itok=AMkHdHgK" width="375" height="283" alt="Profile pictures of Gordana Dukovic and Paul King"> </div> </div> <p>Many chemical reactions require the input of energy to <a rel="nofollow">activate</a> the transformation. This can often be in the form of heat, or chemical energy. One of the most efficient ways of introducing energy into a reaction is by using light. If you don’t have to heat up a reaction, or add extra chemicals to it, and instead shine a light on it, you can save significant energy. However, it can be difficult to control and optimize light-driven reactions. This research, <a href="https://doi.org/10.1016/j.chempr.2025.102594" rel="nofollow">just published in Chem</a>, is a collaboration between the <a href="/lab/dukovicgroup/" rel="nofollow">Dukovic Group</a> at the ɫƵ (ɫƵ) and the <a href="https://research-hub.nrel.gov/en/persons/paul-king" rel="nofollow">King Group</a> at the National Renewable Energy Lab (NREL) and provides a holistic understanding of the light-driven production of hydrogen gas using a nanocrystal-enzyme complex as the catalyst, and a computational framework that can be used more generally to understand other light-driven chemical reactions in the future. The code for this model is being made available in the supplementary documents of this article.&nbsp;</p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default 3"> <div class="ucb-article-text" itemprop="articleBody"> <div><p><span>Chemical catalysis is a special type of reaction, one that increases the speed of a transformation and often reduces the amount of waste produced by the process. Think of it like an assembly line. The catalyst is like a station on the line, bringing together two or more components to create a new product that is then passed along. Without the catalyst the components might, by chance, bump together and form the desired product, but it will be much slower, and much less frequent. The catalyst remains unchanged in the process and can repeat the transformation many times.&nbsp;</span></p> <div class="align-right image_style-medium_750px_50_display_size_"> <div class="imageMediaStyle medium_750px_50_display_size_"> <img loading="lazy" src="/rasei/sites/default/files/styles/medium_750px_50_display_size_/public/2025-06/Overall.png?itok=swecEmsu" width="750" height="855" alt="Overview of different types of catalysis"> </div> </div> <p>Enzymes are Nature’s catalysts. On the cellular level, whenever a change needs to happen, an enzyme is usually involved. The speed of an enzyme, and its selectivity, that is its ability to only react with the desired molecules out of the soup of molecules present in a typical cell, is fantastic. Enzymes are often superior to catalysts we can make in a lab, and as such, much research has gone into finding ways to harness such enzymes to do reactions for us in the lab. Unfortunately, it is not as easy as just grabbing some enzyme out of a cell. Enzymes often require specific environments and partners to react with.</p><p><span>Redox enzymes are a special, and particularly attractive, class of enzymes. They are capable of adding, or removing, an electron from a chemical reaction, a key step in the production of hydrogen gas. Redox enzymes rarely exist by themselves. Returning to the assembly line analogy, to get a station that can add the electrons to the protons (H<sup>+</sup>) to make hydrogen gas, many other stations need to be added before in a specific order. In a cell there is a chain of enzymes that pass the electrons along before the reaction can take place.&nbsp;</span></p><p><span>This is where the artificial component comes in. The nanocrystal, which, when exposed to light, releases an electron, replaces the long chain of enzymes and can directly transfer an electron to the enzyme. So, you reduce your assembly line down from a chain of many stations to just two. “This work was really only possible through collaboration” explains Gordana Dukovic, the lead researcher at ɫƵ. “The team at NREL have vast expertise in hydrogenase (the redox enzyme that creates hydrogen gas), and we have the expertise in making and tailoring the nanocrystals and studying what they do after they absorb light”. Getting the enzyme to work with the artificial electron donor took some work.</span></p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><div class="feature-layout-callout feature-layout-callout-large"><div class="ucb-callout-content"><div class="ucb-box ucb-box-title-left ucb-box-alignment-none ucb-box-style-fill ucb-box-theme-lightgray"><div class="ucb-box-inner"><div class="ucb-box-title">Show me more!</div><div class="ucb-box-content"><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-large" href="https://doi.org/10.1016/j.chempr.2025.102594" rel="nofollow"><span class="ucb-link-button-contents">This Research</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-regular" href="https://doi.org/10.1021/ja2116348" rel="nofollow"><span class="ucb-link-button-contents">Characterization of Photochemical Processes</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-regular" href="https://doi.org/10.1021/ja413001p" rel="nofollow"><span class="ucb-link-button-contents">Electron Transfer Kinetics</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-regular" href="https://doi.org/10.1039/C4CP05993J" rel="nofollow"><span class="ucb-link-button-contents">Competition between electron transfer processes</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-regular" href="https://doi.org/10.1021/jacs.7b04216" rel="nofollow"><span class="ucb-link-button-contents">Activation Thermodynamics</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-regular" href="https://doi.org/10.1021/acs.jpcc.7b07229" rel="nofollow"><span class="ucb-link-button-contents">Role of Surface-Capping Ligands</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-regular" href="https://pubs.acs.org/doi/10.1021/acs.jpcc.8b09916" rel="nofollow"><span class="ucb-link-button-contents">Quantum Efficiency of Charge Transfer</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-regular" href="https://www.annualreviews.org/content/journals/10.1146/annurev-physchem-050317-014232" rel="nofollow"><span class="ucb-link-button-contents">2020 Review of this research area</span></a></p></div></div></div></div></div><p>The two teams first started working together in 2011 and have invested a great deal of work in understanding many aspects of this nanocrystal-enzyme hybrid. “Working with the team at NREL has been really amazing” says Dukovic, “the opportunity to work with experts who really help you ask the important questions, and identify where our assumptions were wrong, was essential for this work.” For over more than a decade this collaboration has interrogated the different steps of this process, such as how the nanocrystal and enzyme fit together, how the nanocrystal generates an electron when exposed to light, how the nanocrystal transfers the electron to the enzyme, and how the enzyme uses those electrons to make hydrogen. It is only through building this comprehensive understanding of the steps that underpin this reaction that the team are in the position to provide a holistic picture of the whole transformation. Furthermore, the framework that they have built is robust enough to be applied in improving other light-driven reactions in the future.</p><p>This work describes an improved assembly line capable of converting light energy into hydrogen gas, a clean burning fuel that provides new, more efficient ways, to generate electricity. Perhaps more excitingly, it demonstrates the power of a new computational model and framework, built on over a decade of collaborative research, which has been made freely available, that provides insights into light-driven reactions and can be used by the scientific community to refine and optimize future light-driven chemistry. Helena Keller, the lead author is enthusiastic about the next steps “We are in a really exciting place now, where the capabilities of using computational methods to understand complex systems like this are becoming more and more accessible. The better we understand how to control processes at the smallest scales – like at the level of individual electron transfers – the closer we get to revolutionizing the way we produce energy and materials for the good of the world”.&nbsp;</p></div> </div> </div> </div> </div> <div>June 2025</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2025-06/2025_05_Dukovic_Wide.jpg?itok=eU2FoTF3" width="1500" height="328" alt="Illustration of hybrid nanocrystal-enzyme photocatalysis"> </div> </div> <div>On</div> <div>White</div> Mon, 09 Jun 2025 16:27:04 +0000 Daniel Morton 1300 at /rasei Ocean microbes offer clues to environmental resilience /rasei/2025/05/16/ocean-microbes-offer-clues-environmental-resilience <span>Ocean microbes offer clues to environmental resilience</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-05-16T13:57:34-06:00" title="Friday, May 16, 2025 - 13:57">Fri, 05/16/2025 - 13:57</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-05/2025_05_OceanMicrobes.jpg?h=d3502f1d&amp;itok=HHHNdFt_" width="1200" height="800" alt="RNA and DNA illustration"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> <a href="/rasei/taxonomy/term/170"> Publication Highlight </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/282" hreflang="en">Bio-Catalysis</a> <a href="/rasei/taxonomy/term/135" hreflang="en">Cameron</a> <a href="/rasei/taxonomy/term/173" hreflang="en">Eckert</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>May 2025</div> <script> window.location.href = `/chbe/ocean-microbes-offer-clues-environmental-resilience`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Fri, 16 May 2025 19:57:34 +0000 Daniel Morton 1294 at /rasei Salt isn't just good for food, it improves perovskites solar harvesting properties as well /rasei/2025/04/30/salt-isnt-just-good-food-it-improves-perovskites-solar-harvesting-properties-well <span>Salt isn't just good for food, it improves perovskites solar harvesting properties as well</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-04-30T19:44:45-06:00" title="Wednesday, April 30, 2025 - 19:44">Wed, 04/30/2025 - 19:44</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-05/2025_04_PerovskiteScience.png?h=2469e47b&amp;itok=j_NSr5yg" width="1200" height="800" alt="Gloved fingers holding a solar cell"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> <a href="/rasei/taxonomy/term/170"> Publication Highlight </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/120" hreflang="en">Beard</a> <a href="/rasei/taxonomy/term/144" hreflang="en">Berry</a> <a href="/rasei/taxonomy/term/287" hreflang="en">Perovskites</a> <a href="/rasei/taxonomy/term/273" hreflang="en">Solar Power</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>April 2025</div> <script> window.location.href = `https://www.nrel.gov/news/detail/program/2025/nrel-led-research-effort-adds-salt--boosts-performance-of-perovskites`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Thu, 01 May 2025 01:44:45 +0000 Daniel Morton 1289 at /rasei An ultrafast microscope makes movies one femtosecond at a time /rasei/2025/03/11/ultrafast-microscope-makes-movies-one-femtosecond-time <span>An ultrafast microscope makes movies one femtosecond at a time</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-03-11T09:53:51-06:00" title="Tuesday, March 11, 2025 - 09:53">Tue, 03/11/2025 - 09:53</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-03/2025_03_PerovskiteMovie.jpg?h=d3502f1d&amp;itok=BOoZ2oef" width="1200" height="800" alt="Illustration of a laser on a perovskite"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> <a href="/rasei/taxonomy/term/170"> Publication Highlight </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/287" hreflang="en">Perovskites</a> <a href="/rasei/taxonomy/term/131" hreflang="en">Shaheen</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>March 2025</div> <script> window.location.href = `/asmagazine/2025/03/11/ultrafast-microscope-makes-movies-one-femtosecond-time`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Tue, 11 Mar 2025 15:53:51 +0000 Daniel Morton 1251 at /rasei Catalyzing the Sustainable Decomposition of PFAS Forever Chemicals /rasei/2024/12/20/catalyzing-sustainable-decomposition-pfas-forever-chemicals <span>Catalyzing the Sustainable Decomposition of PFAS Forever Chemicals</span> <span><span>Daniel Morton</span></span> <span><time datetime="2024-12-20T17:30:44-07:00" title="Friday, December 20, 2024 - 17:30">Fri, 12/20/2024 - 17:30</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2024-12/2024_12_TheConversationPFAS-02.jpg?h=2512a009&amp;itok=GswGsR1d" width="1200" height="800" alt="Image of plastic waste washing up from the sea"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> <a href="/rasei/taxonomy/term/170"> Publication Highlight </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/281" hreflang="en">Catalysis</a> <a href="/rasei/taxonomy/term/163" hreflang="en">Damrauer</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/270" hreflang="en">Energy Impacts</a> <a href="/rasei/taxonomy/term/289" hreflang="en">Polymers</a> <a href="/rasei/taxonomy/term/350" hreflang="en">SUPRCAT</a> </div> <a href="/rasei/our-community">Daniel Morton</a> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p class="lead">RASEI Fellow Niels Damrauer is part of a collaborative team that have developed a new light-driven C-F activation reaction, one that has the potential to help dismantle PFAS ‘forever chemicals’</p><div class="feature-layout-callout feature-layout-callout-large"><div class="ucb-callout-content"><div class="ucb-box ucb-box-title-left ucb-box-alignment-none ucb-box-style-fill ucb-box-theme-lightgray"><div class="ucb-box-inner"><div class="ucb-box-title">Find out more</div><div class="ucb-box-content"><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-large" href="https://www.nature.com/articles/s41586-024-08327-7" rel="nofollow"><span class="ucb-link-button-contents">Read the Article</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-large" href="https://theconversation.com/we-developed-a-way-to-use-light-to-dismantle-pfas-forever-chemicals-long-lasting-environmental-pollutants-244263" rel="nofollow"><span class="ucb-link-button-contents">Highlight in The Conversation</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-large ucb-link-button-full" href="https://cen.acs.org/environment/persistent-pollutants/New-techniques-use-visible-light/102/web/2024/11" rel="nofollow"><span class="ucb-link-button-contents">C&amp;EN Highlight</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-large ucb-link-button-full" href="/asmagazine/2025/01/23/shining-light-forever-forever-chemicals" rel="nofollow"><span class="ucb-link-button-contents">Colorado Arts and Science Magazine Highlight</span></a></p></div></div></div></div></div><p>Perfluoroalkyl and polyfluoroalkyl substances, or PFAS, are synthetic compounds that have found widespread use in consumer products and industrial applications. Their water and grease resistant properties have been part of their attraction in their applications, but these are also the reason that they are now found practically everywhere in the environment, they are very difficult to decompose.</p><p>While many chemicals will decompose relatively quickly, studies have shown that PFAS are expected to stick around for up to 1000 years. While this durability is great in something like firefighting foams or non-stick cookware, it is not great when these compounds get into the environment.</p><p>This new article, published in Nature in November of 2024, describes the work of a collaborative team of theoretical and experimental chemists, who have developed a new photochemical reaction that could hold promise of speeding up the decomposition of PFAS. A recent highlight of this work, written by the graduate student and postdoctoral fellows who did the research, appeared in The Conversation.</p><p>Using a photocatalyst, that absorbs light to speed up a reaction, the researchers were able to ‘activate’ one of the carbon-fluorine bonds, one of the strongest bonds in organic chemistry. The photocatalyst absorbs light, transfers electrons to the fluorine containing molecules, which then breaks down the sturdy carbon-fluorine bond.</p><p>While this doesn’t decompose the whole molecule, it is essentially like finding a chink in the armor, it opens the door to degradation of the PFAS to harmless smaller molecules.</p><p>This study demonstrated this process on a small scale, and the researchers are looking at how to optimize this reaction so it is more robust and can be done on larger scales. This work is part of a National Science Foundation funded Center for Chemical Innovation called <a href="/rasei/suprcat" rel="nofollow">SuPRCat</a>, a research community that will be looking at this challenge, among others.</p><p>If it is possible to break down these forever chemicals, it will help prevent these environmental pollutants being in our soil, rivers, and drinking water. Excited to see the next steps from the team!</p></div> </div> </div> </div> </div> <div>December 2024</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2024-12/2024_12_TheConversationPFAS-03.jpg?itok=LjYzEWBD" width="1500" height="323" alt="Image of plastic waste washing up from the sea"> </div> </div> <div>On</div> <div>White</div> Sat, 21 Dec 2024 00:30:44 +0000 Daniel Morton 1213 at /rasei RASEI Fellows Collaboration in CHOISE Twists Halide Perovskites From a Distance /rasei/2024/10/25/rasei-fellows-collaboration-choise-twists-halide-perovskites-distance <span>RASEI Fellows Collaboration in CHOISE Twists Halide Perovskites From a Distance</span> <span><span>Daniel Morton</span></span> <span><time datetime="2024-10-25T16:31:11-06:00" title="Friday, October 25, 2024 - 16:31">Fri, 10/25/2024 - 16:31</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2024-10/2024_10_NatureChemNREL.png?h=e2bcc475&amp;itok=Yul1gcwb" width="1200" height="800" alt="illustration of twisted perovskites"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> <a href="/rasei/taxonomy/term/170"> Publication Highlight </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/120" hreflang="en">Beard</a> <a href="/rasei/taxonomy/term/144" hreflang="en">Berry</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/266" hreflang="en">Energy Generation</a> <a href="/rasei/taxonomy/term/148" hreflang="en">Luther</a> <a href="/rasei/taxonomy/term/50" hreflang="en">Marder</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/287" hreflang="en">Perovskites</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <script> window.location.href = `https://www.nrel.gov/news/program/2024/nrel-backed-research-effort-twists-halide-perovskites-from-a-distance.html`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Fri, 25 Oct 2024 22:31:11 +0000 Daniel Morton 1169 at /rasei RASEI Researchers unlock a 'new synthetic frontier' for quantum dots /rasei/2024/10/24/rasei-researchers-unlock-new-synthetic-frontier-quantum-dots <span>RASEI Researchers unlock a 'new synthetic frontier' for quantum dots</span> <span><span>Daniel Morton</span></span> <span><time datetime="2024-10-24T13:50:17-06:00" title="Thursday, October 24, 2024 - 13:50">Thu, 10/24/2024 - 13:50</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2024-11/2024_10_24_Science_RASEI%20Thumbnail.png?h=e2bcc475&amp;itok=TIHIy5TV" width="1200" height="800" alt="picture of a sample of the quantum dots"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> <a href="/rasei/taxonomy/term/170"> Publication Highlight </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/160" hreflang="en">Dukovic</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/304" hreflang="en">IMOD</a> <a href="/rasei/taxonomy/term/290" hreflang="en">Semiconductors</a> <a href="/rasei/taxonomy/term/114" hreflang="en">Yazdi</a> </div> <span>Lauren Scholz</span> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2024-11/2024_10_24_Science-03.png?itok=T1nuDTzH" width="1500" height="323" alt="Banner showing the RASEI authors, the IMOD logo and a picture of a sample of the quantum dots"> </div> </div> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><div class="feature-layout-callout feature-layout-callout-large"><div class="ucb-callout-content"><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-large" href="https://doi.org/10.1126/science.ado7088" rel="nofollow"><span class="ucb-link-button-contents">Read the Full Paper here</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-large" href="https://pme.uchicago.edu/news/uchicago-researchers-unlock-new-synthetic-frontier-quantum-dots" rel="nofollow"><span class="ucb-link-button-contents">University of Chicago Press Release</span></a></p></div></div><p>In a breakthrough for nanotechnology, researchers have discovered a new way to synthesize quantum dot nanocrystals using molten salt as a medium. Traditional methods to create these materials required organic solvents, which cannot withstand the high temperatures needed for certain semiconductor materials, particularly those combining elements from groups III and V on the periodic table. By using superheated molten sodium chloride, scientists were able to synthesize these semiconductor nanocrystals, paving the way for improved applications in fields like quantum computing, LED lighting, and solar technology.</p><p>Led by a team from the University of Chicago and collaborating institutions, including <strong>RASEI Fellows Sadegh Yazdi and Gordana Dukovic</strong>, this novel method also opens new avenues for materials science by enabling the synthesis of previously inaccessible nanocrystal compositions. The technique addresses long-standing challenges by providing a high-temperature environment without degrading the materials. Researchers hope this advance will contribute to new types of devices and materials, marking a significant expansion in the range of accessible quantum dot technologies.</p><p><span>For a more information, please see the &nbsp;press release from The University of Chicago.&nbsp;</span></p></div> </div> </div> </div> </div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Thu, 24 Oct 2024 19:50:17 +0000 Daniel Morton 1174 at /rasei Discovery could lead to longer-lasting EV batteries, hasten energy transition /rasei/2024/09/12/discovery-could-lead-longer-lasting-ev-batteries-hasten-energy-transition <span>Discovery could lead to longer-lasting EV batteries, hasten energy transition</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2024-09-12T00:00:00-06:00" title="Thursday, September 12, 2024 - 00:00">Thu, 09/12/2024 - 00:00</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/article-thumbnail/2024_09_Toney_Science_RASEI%20Thumbnail.jpg?h=5cad5bfe&amp;itok=m1M2baTZ" width="1200" height="800" alt="gloved hand testing lithium-ion batteries"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> <a href="/rasei/taxonomy/term/170"> Publication Highlight </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/275" hreflang="en">Batteries</a> <a href="/rasei/taxonomy/term/267" hreflang="en">Energy Storage</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/111" hreflang="en">Toney</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p>Mike Toney explores how lithium-ion batteries self-discharge to improve future designs</p></div> </div> </div> </div> </div> <script> window.location.href = `/today/2024/09/12/discovery-could-lead-longer-lasting-ev-batteries-hasten-energy-transition`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Thu, 12 Sep 2024 06:00:00 +0000 Anonymous 1045 at /rasei